
INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)

VOLUME-1, ISSUE-IV (June-July 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

66 IJDCST

Hybrid Load Balancers for an Effective Multipath Switching

System

M.Bharathi Rani
1
, S.Suresh Babu

2

1
Student, Sri Mittapalli College of Engineering, Tummalapalem Guntur Dist, Andhra Pradesh, India

2
Assistant Professor, Sri Mittapalli College of Engineering, Tummalapalem Guntur Dist, AndhraPradesh, India

Abstract: Switching is a core technology in a wide variety of communication networks, including the Internet,

circuit-switched telephone networks and optical fiber transmission networks. Prior approaches only implemented

plain switching between different servers using either packet-based solutions or flow-based hashing algorithms

which are not an optimal solution. For better performance previously a load balancing method that implements a

Flow Slice (FS) that cuts off each flow into flow slices at every intra flow intervals leading to a larger than a slicing

threshold and balances the load on a finer granularity based on that threshold. Although effective it involves

multiple hardware implementation costs. We propose to us the hardware driven flow slicing along with a software

driven load balancer to reduce implementation costs. The process involves using Resin as the Load Balancer that

uses an integrated HTTP proxy cache. This enables a web-tier machine cache results for the backend servers and

load re transfer it along less stress paths before estimating the load of a server. A practical implementation of the

proposed system validates our claim to deliver better performance using this hybrid architecture.

Index Terms: Load-Balancing, Multipath Switching, Multistage Multiplane, Flow-Slice

I. INTRODUCTION

Switching is a core technology in a wide variety of

communication networks, including the Internet,

circuit-switched telephone networks and optical fiber

transmission networks. Program slicing is the

computation of the set of programs statements,

the program slice that may affect the values at some

point of interest, referred to as a slicing criterion.

Program slicing can be used in debugging to locate

source of errors more easily. Other applications of

slicing include software maintenance, optimization,

 program analysis, and information flow control. The

last decade has been a time of rapid development for

switching technology in the Internet, with terabit

capacity backbone routers becoming commonplace.

Slicing techniques have been seeing a rapid

development since the original definition by Mark

Weiser. At first, slicing was only static, i.e., applied

on the source code with no other information than the

source code.

http://www.ijdcst.com/
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Program_analysis_(computer_science)
http://en.wikipedia.org/wiki/Non-interference_(security)
http://en.wikipedia.org/wiki/Mark_Weiser
http://en.wikipedia.org/wiki/Mark_Weiser

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)

VOLUME-1, ISSUE-IV (June-July 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

67 IJDCST

One of the major as aspect for designing multipath

switching in load balancing distribution with

incoming traffic analysis across the switching process

present in the network. We present a new scheme,

namely Flow-Slice (FS) that perfectly achieves the

three objectives defined above. Our idea is inspired

from the observations on tens of broadly located

Internet traces that the intra-flow packet intervals are

often, say in 40%~50% percentages, larger than the

delay upper bound at MPS which is calculated

statistically. In this paper we present a technique

Resin as a load balancer web server requires a two

minimum of two configuration files backend servers

and load balancing servers. Due to this web server

takes load balancing.

II. BACKGROUND WORK

Large-scale data centers and cloud computing are

driving the development of 10 Gb Ethernet switches

that are dramatically changing price-performance

tradeoffs for network equipment.

These advances are enabling high performance

overlay networks that support novel network

architectures and services. Previous packet-based

solutions either suffer from delay penalties or lead to

O (N
2
) hardware complexity, hence do not scale to

current trends. Flow-based hashing algorithms also

perform badly due to the heavy-tailed flow-size

distribution. Prior approaches only implemented

plain switching between different servers which is

not an optimal solution. Traditionally Proposes to

implement Flow Slice (FS) that cuts off each flow

into flow slices at every Intraflow interval larger than

a slicing threshold and balances the load on a finer

granularity. The FS scheme achieves comparative

load-balancing performance to the optimal one. It

also limits the probability of out-of-order packets to a

negligible level at the cost of little hardware

complexity. MPS internal switching paths needs to

meet at least three objectives simultaneously:

 Uniform load sharing.

 Intraflow packet ordering.

 Low timing and hardware

complexity.

We measure four performance metrics:

 average packet delay;

 packet loss rate;

 Intraflow packet out-of-order

probability; and

 average per-flow delay jitter

This traffic analysis based switching system in the

routers that can estimate the load faced by servers

and implement routing procedures based on that

estimation offer better performance than plain

switching systems.

III. PROPOSED WORK

The distinction between "hardware" and

"software" load balancers is no longer meaningful. A

so-called "hardware" load balancer is a PC class

CPU, network interfaces with packet processing

capabilities, and some software to bind it all together.

A "software" load balancer realized on a good server

with modern NICs is the same like a high end

hardware load balancer. High-end commercial

hardware offerings like F5 or Citrix Netscaler offers:

1. A rich and deep feature set. Their solution is

mature and can quickly handle all common

needs and some uncommon ones as well.

2. Excellent statistics. Management types love

statistics, and network techs realize that stats

can be useful in troubleshooting too.

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)

VOLUME-1, ISSUE-IV (June-July 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

68 IJDCST

3. A single vendor to choke when something

isn't working, i.e. support contract directly

with the solution vendor.

4. Lower salary costs. The appliance mostly

just works and managing one doesn't take

that many hours.

But problem lies in the investment aspect which is

quiet expensive. With software load balancers we

don't get the opposite, what we get depends on the

software we choose and how we go about it. That

said, typically we'll see(side effects of software load

balancer): Longer time to set up the initial solution.

Especially if we need more than just load balancing,

fx caching + content rewriting + HA, then setting up

open source software takes more manhours. We build

it, We own it. If A company sets up open source

software load balancers within house techs, then

we're 100% responsible for the solution our self.

Documentation, upgrade path, disaster recovery etc

will all need to be considered and perhaps be

implemented by us. The differentiation isn't really on

"hardware" versus "software". It is on "buy a proven

technology stack as an appliance” versus “builds it

yourself". But the key benefit lies in saving the

expenditure. A software load balancer

implementation contains Using Resin as the Load

Balancer. Resin includes a Load Balance Servlet that

can balance requests to backend servers. Because it is

implemented as a Servlet, this configuration is the

most flexible. A site might use 192.168.0.1 as the

frontend load balancer, and send all requests for /foo

to the backend host 192.168.0.10 and all requests to

/bar to the backend host 192.168.0.11. Since Resin

has an integrated HTTP proxy cache, the web-tier

machine can cache results for the backend servers.

Using Resin as the load balancing web server

requires a minimum of two configuration files: one

for the load balancing server, and one for the backend

servers. The front configuration will dispatch to the

backend servers, while the backend will actually

serve the requests. The web-tier server does the load

balancing.

IV. PERFORMANCE ANALYSIS

In this section we describe the following methods as

follows:

Load Balancing:

Interflow packet order is natively preserved besetting

slicing threshold to the delay upper bound at .Any

two packets in the same flow slice cannot be

disordered as they are dispatched to the same

switching path where processing is guaranteed; and

two packets in the same flow but different flow slices

will be in order at departure, as the earlier packet will

have depart from before the latter packet arrives. Due

to the fewer number of active flow slices, the only

additional overhead in, the hash table, can be kept

rather small, , and placed on-chip to provide ultrafast

access speed. This table size depends only on system

line rate and will stay unchanged even if scales to

more than thousand external ports, thus guarantees

system scalability.

Multipath Switching: Through lay-aside Buffer

Management module, all packets are virtually queued

at the output according to the flow group and the

priority class in a hierarchical manner. The output

scheduler fetches packets to the output line using

information provided by. Packets in the same flow

will be virtually buffered in the same queue and

scheduled in discipline. Hence, Intraflow packet

departure orders hold their arriving orders at the

multiplexer. Central-stage parallel switches adopt an

output-queued model.

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)

VOLUME-1, ISSUE-IV (June-July 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

69 IJDCST

 By Theorem, we derive packet delay bound

at first stage. We then study delay at second-stage

switches. Define native packet delay at stage m of an

be delay experienced at stage m on the condition that

all the preceding stages immediately send all arrival

packets out without delay.

Multistage Multiplane Clos Switches: We consider

the Multistage Multiplane Clos-network based switch

by Chao et a . It is constructed of five stages of

switch modules with top-level architecture similar to

a external input/output ports. The first and last stages

Clos are composed of input demultiplexers and

output multiplexers, respectively, having similar

internal structures as those in PPS. Stages 2-4 of

M2Clos are constructed by parallel switching planes;

however, each plane is no longer formed by a basic

switch, but by a three-stage Clos Network to support

large port count.

Fig 4: Average delivery with load balancing.

Inside each Clos Network, the first stage is

composed by k identical Input Modules. Each IM is

an packet switch, with each output link connected to

a Central Module. Thus, there are a total of m

identical in second stage of the Close networks.

V. CONCLUSION

Flow Slice is a novel load-balancing scheme, that is

based on the fact that the Intraflow packet interval is

often, say in 40-50 percent, larger than the delay

upper bound at MPS. Due to three positive properties

of flow slice, our scheme achieves good load-

balancing uniformity with little hardware overhead

and O(1) timing complexity. By calculating delay

bounds at three popular MPSes, we show that when

the slicing threshold is set to the smallest admissible

value at 1-4 ms, the FS scheme can achieve optimal

performance while keeping the Intraflow packet out-

of-order probability negligible (below 10 6), given an

internal speedup up to two. Our results are also

validated through trace-driven prototype simulations

under highly bursty traffic patterns. FS scheme is

validated in switches without class-based queues. As

QoS provisioning is also critical in switch designs,

one of our future works will be studying FS

performance under QoS conditions.

VI. REFERENCES

1)http://en.wikipedia.org/wiki/Program_slicing

2) Lei Shi1, Bin Liu1, Changhua Sun1, Zhengyu

Yin1, Laxmi Bhuyan2” Flow-Slice: A Novel Load-

Balancing Scheme for Multi-Path Switching

Systems”, ANCS’07, December 3–4, 2007, Orlando,

Florida, USA.ACM 978-1-59593-945-6/07/0012.

3) Li, W. ; Bin Liu ; Xiaojun Wang,” Flow Mapping

In The Load Balancing Parallel Packet Switches”,

High Performance Switching And Routing, 2005.

HPSR. 2005 Workshop On.

4) Bin Liu ; Changhua Sun ; Zhengyu Yin ; Laxmi

Bhuyan ; Chao, H.J, “Load-Balancing Multipath

Switching System with Flow Slice ”, Computers,

IEEE Transactions on (Volume:61 , Issue: 3),

March 2012.

5) Smiljanic, A. “Performance Of Load Balancing

Algorithms In Clos Packet Switches “,High

Performance Switching And Routing, 2004. HPSR.

2004 Workshop On.

http://www.ijdcst.com/
http://en.wikipedia.org/wiki/Program_slicing
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Li,%20W..QT.&searchWithin=p_Author_Ids:37291685800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bin%20Liu.QT.&searchWithin=p_Author_Ids:37279241300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaojun%20Wang.QT.&searchWithin=p_Author_Ids:37560347900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10052
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10052
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bin%20Liu.QT.&searchWithin=p_Author_Ids:37279241300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Changhua%20Sun.QT.&searchWithin=p_Author_Ids:38007000700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhengyu%20Yin.QT.&searchWithin=p_Author_Ids:37895393000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Laxmi%20Bhuyan.QT.&searchWithin=p_Author_Ids:37273460100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Laxmi%20Bhuyan.QT.&searchWithin=p_Author_Ids:37273460100&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6136474
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Smiljanic,%20A..QT.&searchWithin=p_Author_Ids:38189916800&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9133
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9133
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9133

